

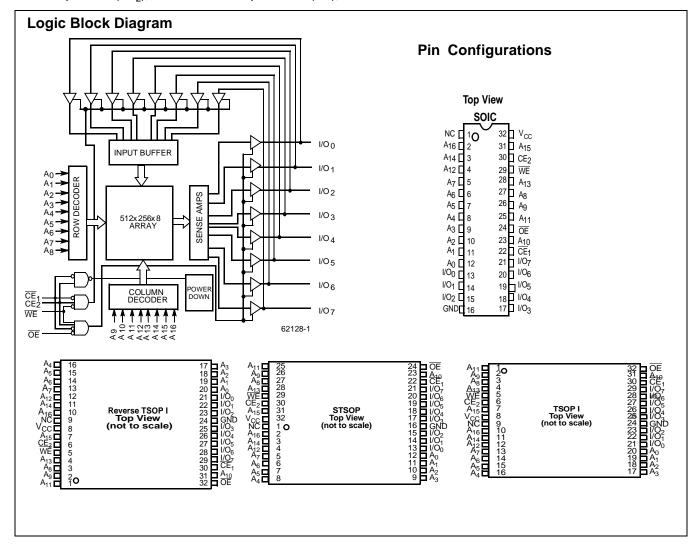
128K x 8 Static RAM

Features

- 4.5V-5.5V operation
- CMOS for optimum speed/power
- Low active power (70 ns, LL version)
 - -82.5 mW (max.) (15 mA)
- Low standby power (70 ns, LL version)
 - -110 μW (max.) (15 μA)
- Automatic power-down when deselected
- . TTL-compatible inputs and outputs
- Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} options

Functional Description

The CY62128B is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}_1$), an active HIGH Chip Enable ($\overline{\text{CE}}_2$), an active LOW Output Enable ($\overline{\text{OE}}$),


and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking Chip Enable One (\overline{CE}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable Two (CE_2) input HIGH. Data on the eight I/O pins (I/O_0) through I/O_7) is then written into the location specified on the address pins (A_0) through A_{16} .

Reading from the device is accomplished by taking Chip Enable One $(\overline{\text{CE}}_1)$ and Output Enable $(\overline{\text{OE}})$ LOW while forcing Write Enable $(\overline{\text{WE}})$ and Chip Enable Two (CE_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or CE_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CE}_1 LOW, CE_2 HIGH, and \overline{WE} LOW).

The CY62128B is available in a standard 450-mil-wide SOIC, 32-pin TSOP type I and STSOP packages.

Selection Guide

			CY62128B-55	CY62128B-70	Unit
Maximum Access Time			55	70	ns
Maximum Operating Current (I _{CC})	Industrial	LL	20	15	mA
	Commericial	LL	20	15	mA
Maximum CMOS Standby Current (I _{SB2})	Industrial	LL	15	15	μΑ
	Commericial	LL	15	15	μΑ

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied–55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[1]}$ –0.5V to +7.0V

Notes:

1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. T_A is the "Instant On" case temperature.

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

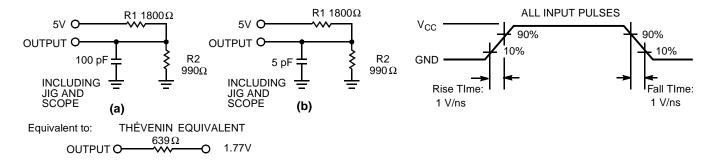
Range	Ambient Temperature ^[2]	v	
Industrial	–40°C to +85°C	5V ± 10%	
Commercial	0°C to +70°C	5V ± 10%	

Electrical Characteristics Over the Operating Range

					62128B-55			6	2128B-7	0	
Parameter	Description	Test Conditions			Min.	Typ. ^[3]	Max.	Min.	Typ. ^[3]	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -1.0 \text{ mA}$			2.4			2.4			V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 2.	1 mA				0.4			0.4	V
V _{IH}	Input HIGH Voltage				2.2		V _{CC} + 0.3	2.2		V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]				-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$			-1		+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{I} \leq V_{CC}, O_{U}$	utput Disa	bled	-1		+1	-1		+1	μΑ
I _{OS}	Output Short Circuit Current ^[4]	V _{CC} = Max., V _{OUT} = GND					-300			-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	Ind'I	LL		7.5	20		6	15	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\label{eq:max.prop} \begin{split} & \frac{Max.}{CE_1} \lor V_{IH} \\ & \text{or } CE_2 \le V_{IL}, \\ & V_{IN} \ge V_{IH} \text{ or } \\ & V_{IN} \le V_{IL}, f = f_{MAX} \end{split}$	Ind'I	LL		0.1	2		0.1	1	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{l} \frac{Max.\ V_{CC},}{CE_1 \geq V_{CC} - 0.3V,}\\ \text{or } CE_2 \leq 0.3V,\\ V_{IN} \geq V_{CC} - 0.3V,\\ \text{or } V_{IN} \leq 0.3V, f = 0 \end{array}$	Ind'I	LL		2.5	15		2.5	15	μА
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	Com	LL		7.5	20		6	15	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\label{eq:max_vcc} \begin{split} & \underbrace{\text{Max. } V_{CC},} \\ & \overline{CE}_1 \geq V_{IH} \\ & \text{ or } CE_2 \leq V_{IL}, \\ & V_{IN} \geq V_{IH} \text{ or } \\ & V_{IN} \leq V_{IL}, f = f_{MAX} \end{split}$	Com	LL		0.1	2		0.1	1	mA
I _{SB2}	Automatic CE Power-Down Current —CMOS Inputs	$\begin{array}{l} \frac{Max.\ V_{CC},}{CE_1 \geq V_{CC} - 0.3V,}\\ \text{or } CE_2 \leq 0.3V,\\ V_{IN} \geq V_{CC} - 0.3V,\\ \text{or } V_{IN} \leq 0.3V, f = 0 \end{array}$	Com	LL		2.5	15		2.5	15	μА

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	9	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	9	pF


- Typical values are included for reference only and are not tested or guaranteed. Typical values are an average of the distribution across normal production variations as measured at $V_{CC} = 5.0V$, $T_A = 25$ °C, and $t_{AA} = 70$ ns

 Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

 Tested initially and after any design or process changes that may affect these parameters. 3.

AC Test Loads and Waveforms

Switching Characteristics^[6] Over the Operating Range

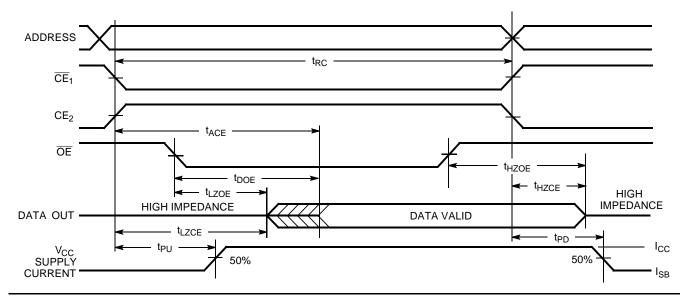
		6212	8B-55	6212		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE		'		1		·I
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		5		ns
t _{ACE}	CE₁ LOW to Data Valid, CE₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		20		35	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[7, 8]		20		25	ns
t _{LZCE}	$\overline{\text{CE}}_1$ LOW to Low Z, CE_2 HIGH to Low $Z^{[8]}$	5		5		ns
t _{HZCE}	$\overline{\text{CE}}_1$ HIGH to High Z, CE_2 LOW to High $\text{Z}^{[7,8]}$		20		25	ns
t _{PU}	CE₁ LOW to Power-Up, CE₂ HIGH to Power-Up	0		0		ns
t _{PD}	CE₁ HIGH to Power-Down, CE₂ LOW to Power-Down		55		70	ns
WRITE CYCLE	<u>[</u> 9]		•		•	•
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE₁ LOW to Write End, CE₂ HIGH to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		50		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[8]	5		5		ns
t _{HZWE}	WE LOW to High Z ^[7, 8]		20		25	ns

Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100-pF load capacitance. 6.

The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. CE₁ and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates



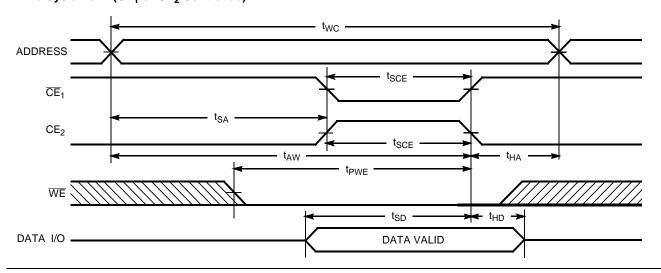
Data Retention Characteristics (Over the Operating Range for "LL" version only)


Parameter	Description			Conditions ^[10]	Min.	Тур.	Max.	Unit
V_{DR}	V _{CC} for Data Retention				2.0			V
ICCDR	Data Retention Current I	Ind.'I	LL	$\begin{split} &V_{CC} = V_{DR} = 3.0V, \\ &CE \geq V_{CC} - 0.3V, \\ &V_{IN} \geq V_{CC} - 0.3V \text{ or,} \\ &V_{IN} \leq 0.3V \end{split}$		1.5	15	μΑ
ICCDR	Data Retention Current (Com.	LL	$\begin{aligned} &V_{CC} = V_{DR} = 3.0V,\\ &CE \geq V_{CC} - 0.3V,\\ &V_{IN} \geq V_{CC} - 0.3V \text{ or,}\\ &V_{IN} \leq 0.3V \end{aligned}$		1.5	15	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time				0			ns
t _R ^[3]	Operation Recovery Time	Э			70			ns

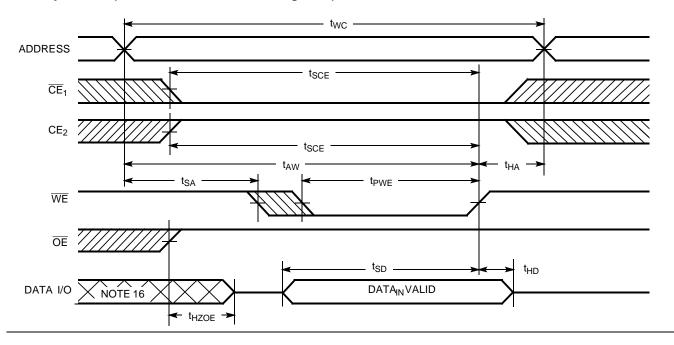
Switching Waveforms

Read Cycle No.1^[11, 12]

Read Cycle No. 2 (OE Controlled)[12, 13]



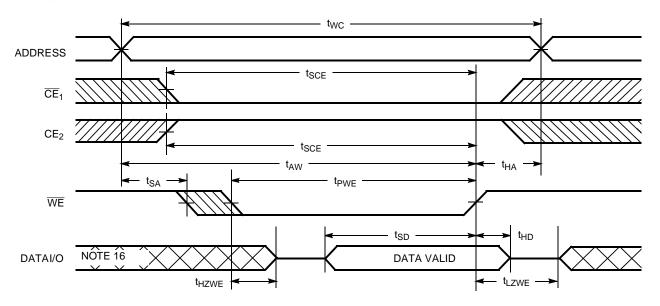
- No input may exceed V_{CC} + 0.5V.
 Device is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.



Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{CE}}_1$ or CE_2 Controlled)[14, 15]

Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ HIGH During Write)[14, 15]



- 14. Data I/O is high impedance if OE = V_{IH}.
 15. If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE going HIGH, the output remains in a high-impedance state
 16. During this period the I/Os are in the output state and input signals should not be applied..

Switching Waveforms (continued)

Write Cycle No.3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) $^{[14,\ 15]}$

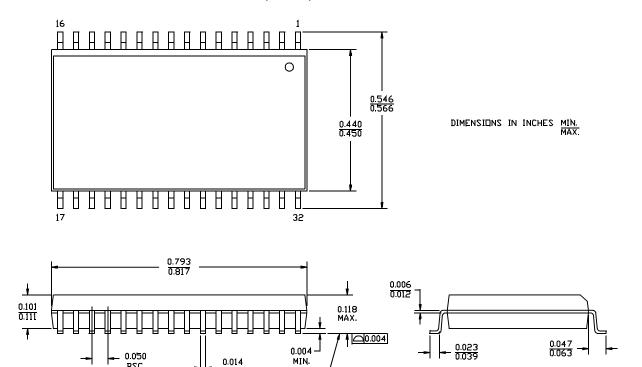
Truth Table

CE ₁	CE ₂	ŌĒ	WE	I/O ₀ -I/O ₇	Mode	Power
Н	Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information

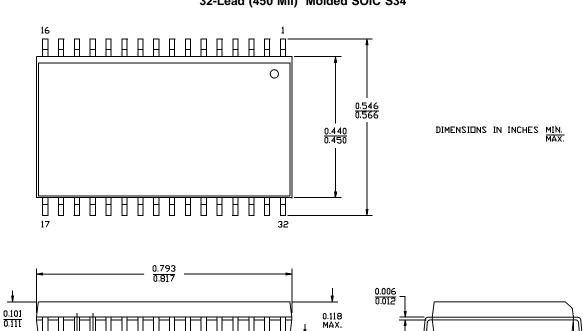
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62128BLL-55SI	S34	32-Lead 450-Mil SOIC	Industrial
	CY62128BLL-55SC	S34	32-Lead 450-Mil SOIC	Commercial
	CY62128BLL-55ZI	Z32	32-Lead TSOP Type I	Industrial
	CY62128BLL-55ZC	Z32	32-Lead TSOP Type I	Commercial
	CY62128BLL-55ZAI	ZA32	32-Lead STSOP Type I	Industrial
	CY62128BLL-55ZAC	ZA32	32-Lead STSOP Type I	Commercial
	CY62128BLL-70ZRI	ZR32	32-Lead Reverse TSOP Type I	Industrial
	CY62128BLL-70ZRC	ZR32	32-Lead Reverse TSOP Type I	Commercial
70	CY62128BLL-70SI	S34	32-Lead 450-Mil SOICI	Industrial
	CY62128BLL-70SC	S34	32-Lead 450-Mil SOIC I	Commercial
	CY62128BLL-70ZI	Z32	32-Lead TSOP Type I	Industrial
	CY62128BLL-70ZC	Z32	32-Lead TSOP Type I	Commercial
	CY62128BLL-70ZAI	ZA32	32-Lead STSOP Type I	Industrial
	CY62128BLL-70ZAC	ZA32	32-Lead STSOP Type I	Commercial
	CY62128BLL-70ZRI	ZR32	32-Lead Reverse TSOP Type I	Industrial
	CY62128BLL-70ZRC	ZR32	32-Lead Reverse TSOP Type I	Commercial

Document #: 38-00524-*F


51-85081-A

51-85081-A

Package Diagrams


32-Lead (450 Mil) Molded SOIC S34

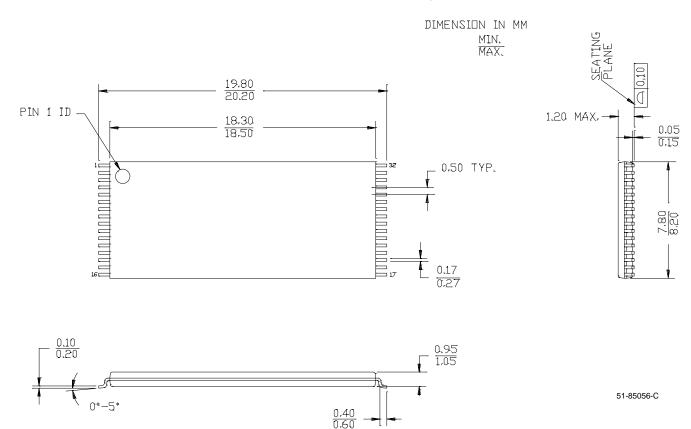
32-Lead (450 Mil) Molded SOIC S34

SEATING PLANE

0.014 0.020

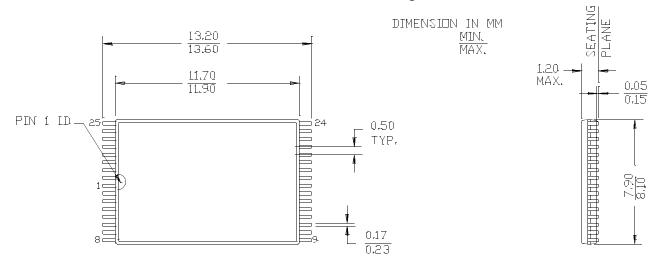
0.004 -MIN.

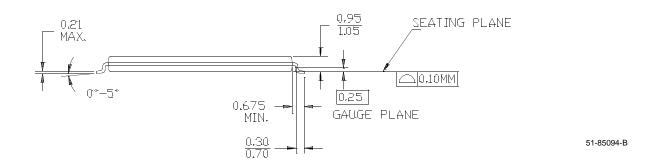
SEATING PLANE


0.014 0.020

0.004

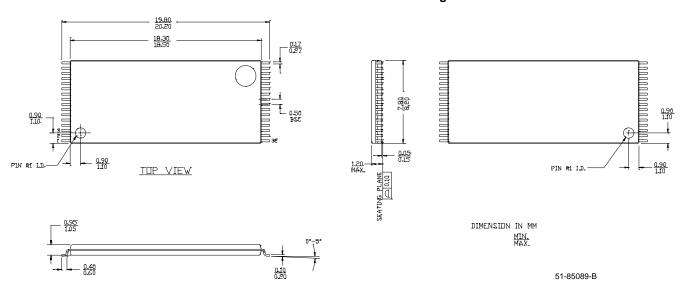
Package Diagrams (continued)


32-Lead Thin Small Outline Package Z32



Package Diagrams (continued)

32-Lead Shrunk Thin Small Outline Package ZA32



Package Diagrams (continued)

32-Lead Reverse Thin Small Outline Package ZR32

